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1 Introduction

The primary motivation behind this work is to develop the theoretical foundations that govern
four-wave mixing (FWM), a χ3 process, and to build a numerical simulation that solves the set of
four coupled amplitude equations.

Conventionally, numerical solvers are only capable of simulating the effects of FWM in optical
fibres and take into account fibre dispersion, self-phase modulation, and linear loss [1]. In this work,
a numerical solver has been developed that can be used to simulate FWM in semiconductor devices,
such as waveguides, and can not only account for dispersion, self-phase modulation, and linear
loss, but also two-photon absorption, a process that is only present in semiconductors. In total,
16 different parameters can be varied. They include: Pump power, refractive index model for the
semiconductor device, signal wavelength, linear loss parameter, self-phase modulation parameters,
T0, laser repetition rate, device length, number of periods, number of steps along t, number of
repetitions per material, number fo steps along the z-direction, step length along t, third-order
effective area, and pulse shape.

In this report, the theory governing four-wave mixing is presented, which includes the derivation
of both the degenerate and non-degenerate coupled-amplitude equations. Then, the specifications
of the numerical solver are discussed. Then, experiment results for a signal wavelength scan,
pump power scan, as well as a two-photon absorption coefficient scan are presented for both the
non-degenerate and degenerate processes.

2 Four-Wave Mixing

2.1 Origin of Four-Wave Mixing

The effects of parametric processes, such as four-wave mixing (FWM) and third-harmonic genera-
tion, arise due to the nonlinear polarization induced in the propagation medium. Nonlinear terms
are introduced and their magnitudes are governed by the nonlinear susceptibilities. Third-order
parametric processes in general involve the interaction between four optical waves. Consider four
optical waves oscillating at angular frequencies ω1, ω2, ω3, and ω4 polarized along the same x-axis.
There are generally two FWM processes: one involving the transfer of energy shared between three
photons to a single photon, and one involving the annihilation and the simultaneous creation of
two pairs of photons.

In the first FWM process, the relationship between the angular frequencies is: ω4 = ω1+ω2+ω3.
The three angular frequencies can be identical (ω1 = ω2 = ω3), which would lead to third-harmonic
generation, or frequency conversion if ω1 = ω2 6= ω3.

In the second FWM process, the relationship between the angular frequencies is: ω3 + ω4 =
ω1 + ω2.

The phase-matching condition for the above processes is as follows: ∆k = k3 + k4 − k1 − k2 =
(n3ω3 + n4ω4 − n1ω1 − n2ω2) /c = 0.

3



2.2 Pulse-Propagation Equations

Fundamentally, in four-wave mixing, two strong pump waves at ω1 transfer energy to two waves
at ω3, and ω4, upshifted and downshifted in frequency. Furthermore, a weak signal at ω3 can be
injected into the two pump waves in order to achieve parametric amplification and the production
of a new wave at ω4.

We can start by studying the wave equation with both the linear and nonlinear components:

∇2E− 1

c2

∂2E

∂t2
= µ0

∂2PL

∂t2
+ µ0

∂2PNL

∂t2
(1)

The jth electric field component propagating inside the fibre is given by:

Ej(r) = Fj(x, y)Aj(z) (2)

Fj(x, y) is the spatial distribution of the fibre mode of the jth field. The evolution of the slow-
varying pulse envelope amplitude Aj(z) for each component during propagation can be obtained
by solving the set of coupled amplitude equations.

2.3 Non-degenerate FWM Coupled Amplitude Equations

We can now consider the most general form of four-wave mixing (non-degenerate). The following
four coupled amplitude equations can be solved in order to get wave amplitudes.

dA1

dz
=
in′2ω1

c

f11 |A1|2 + 2
∑
k 6=1

f1k |Ak|2
A1 + 2f1234A

∗
2A3A4e

i∆kz

− α0,1

2A
(3)
eff,1

A1|A1|2 (3)

dA2

dz
=
in′2ω2

c

f22 |A2|2 + 2
∑
k 6=2

f2k |Ak|2
A2 + 2f2134A

∗
1A3A4e

i∆kz

− α0,2

2A
(3)
eff,2

A2|A2|2 (4)

dA3

dz
=
in′2ω3

c

f33 |A3|2 + 2
∑
k 6=3

f3k |Ak|2
A3 + 2f3412A1A2A

∗
4e
−i∆kz

− α0,3

2A
(3)
eff,3

A3|A3|2 (5)

dA4

dz
=
in′2ω4

c

f44 |A4|2 + 2
∑
k 6=4

f4k |Ak|2
A4 + 2f4312A1A2A

∗
3e
−i∆kz

− α0,4

2A
(3)
eff,4

A4|A4|2 (6)

We can now make several simplifications to the existing model. The overlap integral fijkl and

fij can be approximated as 1/Aeff . With this approximation, the prefactor
in′

2w4

c
can be combined

with 1/Aeff to form a new pre-factor of
in′

2w4

cAeff
. This term is equivalent to i multiplied by the

nonlinear parameter γ.
The new set of coupled amplitude equations are now:
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dA1

dz
= iγ

|A1|2 + 2
∑
k 6=1

|Ak|2
A1 + 2A∗2A3A4e

i∆kz

− α0,1

2A
(3)
eff,1

A1|A1|2 (7)

dA2

dz
= iγ

|A2|2 + 2
∑
k 6=2

|Ak|2
A2 + 2A∗1A3A4e

i∆kz

− α0,2

2A
(3)
eff,2

A2|A2|2 (8)

dA3

dz
= iγ

|A3|2 + 2
∑
k 6=3

|Ak|2
A3 + 2A∗4A1A2e

−i∆kz

− α0,3

2A
(3)
eff,3

A3|A3|2 (9)

dA4

dz
= iγ

|A4|2 + 2
∑
k 6=4

|Ak|2
A4 + 2A∗3A1A2e

−i∆kz

− α0,4

2A
(3)
eff,4

A4|A4|2 (10)

The effects of group-velocity dispersion (GVD) can be included by making the following sub-
stitution [2]:

dAj

dz
→ ∂Aj

∂z
+ β1j

∂Aj

∂t
+
i

2
β2j

∂2Aj

∂t2
+

1

2
αjAj (11)

In this case, we are assuming that all four waves in FWM are polarized along a principle
axis of a birefringent fibre. The resulting four equations include the effects of self-phase modu-
lation (SPM), cross-phase modulation (XPM), dispersion, as well as two-photon absorption (TPA):

∂A1

∂z
+β11

∂A1

∂t
+
i

2
β21

∂2A1

∂t2
+

1

2
α1A1 = iγ

|A1|2 + 2
∑
k 6=1

|Ak|2
A1 + 2A∗2A3A4e

i∆kz

− α0,1

2A
(3)
eff,1

A1|A1|2

(12)

∂A2

∂z
+β12

∂A2

∂t
+
i

2
β22

∂2A2

∂t2
+

1

2
α2A2 = iγ

|A2|2 + 2
∑
k 6=2

|Ak|2
A2 + 2A∗1A3A4e

i∆kz

− α0,2

2A
(3)
eff,2

A2|A2|2

(13)

∂A3

∂z
+β13

∂A3

∂t
+
i

2
β23

∂2A3

∂t2
+

1

2
α3A3 = iγ

|A3|2 + 2
∑
k 6=3

|Ak|2
A3 + 2A∗4A1A2e

−i∆kz

− α0,3

2A
(3)
eff,3

A3|A3|2

(14)

∂A4

∂z
+β14

∂A4

∂t
+
i

2
β24

∂2A4

∂t2
+

1

2
α4A4 = iγ

|A4|2 + 2
∑
k 6=4

|Ak|2
A4 + 2A∗3A1A2e

−i∆kz

− α0,4

2A
(3)
eff,4

A4|A4|2

(15)
After rearranging the equation, we obtain the following form:
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∂A1

∂z
= iγ

|A1|2 + 2
∑
k 6=1

|Ak|2
A1 + 2A∗2A3A4e

i∆kz

−β11
∂A1

∂t
− i

2
β21

∂2A1

∂t2
−1

2
α1A1−

α0,1

2A
(3)
eff,1

A1|A1|2

(16)

∂A2

∂z
= iγ

|A2|2 + 2
∑
k 6=2

|Ak|2
A2 + 2A∗1A3A4e

i∆kz

−β12
∂A2

∂t
− i

2
β22

∂2A2

∂t2
−1

2
α2A2−

α0,2

2A
(3)
eff,2

A2|A2|2

(17)

∂A3

∂z
= iγ

|A3|2 + 2
∑
k 6=3

|Ak|2
A3 + 2A∗4A1A2e

−i∆kz

−β13
∂A3

∂t
− i

2
β23

∂2A3

∂t2
−1

2
α3A3−

α0,3

2A
(3)
eff,3

A3|A3|2

(18)

∂A4

∂z
= iγ

|A4|2 + 2
∑
k 6=4

|Ak|2
A4 + 2A∗3A1A2e

−i∆kz

−β14
∂A4

∂t
− i

2
β24

∂2A4

∂t2
−1

2
α4A4−

α0,4

2A
(3)
eff,4

A4|A4|2

(19)

2.4 Degenerate FWM Coupled Amplitude Equations

When the two pump frequencies coincide such that ω1 = ω2, degenerate FWM is in play. We now
have the following governing coupled-amplitude equations:

∂A1

∂z
= iγ

|A1|2 + 2
∑
k 6=1

|Ak|2
A1 + 2A∗1A3A4e

i∆kz

−β11
∂A1

∂t
− i

2
β21

∂2A1

∂t2
−1

2
α1A1−

α0,1

2A
(3)
eff,1

A1|A1|2

(20)

∂A3

∂z
= iγ

|A3|2 + 2
∑
k 6=3

|Ak|2
A3 + 2A∗4A1A1e

−i∆kz

−β13
∂A3

∂t
− i

2
β23

∂2A3

∂t2
−1

2
α3A3−

α0,3

2A
(3)
eff,3

A3|A3|2

(21)

∂A4

∂z
= iγ

|A4|2 + 2
∑
k 6=4

|Ak|2
A4 + 2A∗3A1A1e

−i∆kz

−β14
∂A4

∂t
− i

2
β24

∂2A4

∂t2
−1

2
α4A4−

α0,4

2A
(3)
eff,4

A4|A4|2

(22)
The indices 1, 3, and 4 correspond to the degenerate pump amplitude, signal amplitude, and

idler amplitude, respectively.
If we ignore the effects of dispersion for a simplified model, we have the following set of coupled-

amplitude equations:

∂A1

∂z
= iγ

|A1|2 + 2
∑
k 6=1

|Ak|2
A1 + 2A∗1A3A4e

i∆kz

− 1

2
α1A1 −

α0,1

2A
(3)
eff,1

A1|A1|2 (23)

∂A3

∂z
= iγ

|A3|2 + 2
∑
k 6=3

|Ak|2
A3 + 2A∗4A1A1e

−i∆kz

− 1

2
α3A3 −

α0,3

2A
(3)
eff,3

A3|A3|2 (24)

6



∂A4

∂z
= iγ

|A4|2 + 2
∑
k 6=4

|Ak|2
A4 + 2A∗3A1A1e

−i∆kz

− 1

2
α4A4 −

α0,4

2A
(3)
eff,4

A4|A4|2 (25)

3 Four-wave Mixing Numerical Solver Specifications

3.1 Simulation Parameters

The following parameters are specified in order to run the simulation:

1. Pump 1 and Pump 2 Power

2. Refractive Index Models for Pump 1, Pump 2, Signal, and Idler (TE or TM Mode)

3. Pump 1, Pump 2, and Signal wavelengths

4. Pump 1, Pump 2, Signal, and Idler Linear Loss Parameters

5. Pump 1, Pump 2, Signal, and Idler Effective Self-phase Modulation Parameter

6. Pump 1, Pump 2, Signal, and Idler Two-photon Absorption Parameters

7. Pump 1, Pump 2, Signal, and Idler T0 (FWHM/1.665)

8. Laser Repetition Rate

9. Device Length

10. Number of Periods

11. Number of Steps Along t

12. Number of Iterations Per Material

13. Number of Steps Along z-direction

14. Step Length Along t

15. Pump 1, Pump 2, Signal, and Idler Third-Order Effective Area

16. Pump 1, Pump 2, Signal, and Idler Pulse Shape

3.2 Simulation Structure

The simulation utilizes three primary MATLAB scripts: step4 wave.m, PIA Gain.m, and simula-
tion scan 4wave.m. step4 wave.m handles most of the numerical computation, while PIA Gain.m
sets up the entirety of the simulation including parameters and plotting. simulation scan 4wave.m
is used for scanning between a range of signal wavelengths in order to find the phase-matching
point by using PIA Gain.m in combination with step4 wave.m.
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3.3 Split-Step Fourier Method (SSFM)

The step4 wave.m function utilizes the split-step method for solving the nonlinear Schrödinger
equations.

We can now express the coupled-amplitude equations in the following form:

∂A1

∂z
= (D̂1 + N̂1)A1 (26)

∂A2

∂z
= (D̂2 + N̂2)A2 (27)

∂A3

∂z
= (D̂3 + N̂3)A3 (28)

∂A4

∂z
= (D̂4 + N̂4)A4 (29)

D̂i for i = 1, 2, 3, 4 and N̂i for i = 1, 2, 3, 4 are the differential operator accounting for dispersion
and nonlinear operator governing the effects of fibre nonlinearities, respectively [3]. Each of these
operators are specified as follows:

D̂i = −β1i
∂

∂t
− i

2
β2i

∂2

∂t2
− 1

2
αi (30)

N̂i = iγ|Ai|2 + 2iγ
A∗jAkAle

i∆kz

Ai

− α0,i

2A
(3)
eff,i

|Ai|2 (31)

The numerical solver computes the first linear half-step (dispersion), followed by the nonlinear
step and the second linear half-step. For the nonlinear half-step, a 4th-order Runge Kutta algorithm
is used.

4 Non-degenerate FWM Simulation Results

4.1 Non-degenerate FWM Signal Wavelength Scan

A scan with the following parameters was conducted for the non-degenerate FWM process. The
signal wavelengths ranged from 1100 nm to 1600 nm.

1. Pump 1 and Pump 2 Power: 30 mW, 40 mW, 50 mW, 60 mW

2. Refractive Index Models for Pump 1, Pump 2, Signal, and Idler: TE, TM, TE, TM

3. Pump 1, Pump 2, and Signal wavelengths: 1310 nm, 1310 nm, 1100 nm - 1600 nm

4. Pump 1, Pump 2, Signal, and Idler Linear Loss Parameters: 200 m−1, 200 m−1, 200 m−1,
200 m−1

5. Pump 1, Pump 2, Signal, and Idler Effective Self-phase Modulation Parameter: 100× 10−20 m2

W
,

100× 10−20 m2

W
, 100× 10−20 m2

W
, 100× 10−20 m2

W
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6. Pump 1, Pump 2, Signal, and Idler Two-photon Absorption Parameters: 1.5× 10−12 m
W

,
1.5× 10−12 m

W
, 1.5× 10−12 m

W
, 1.5× 10−12 m

W

7. Pump 1, Pump 2, Signal, and Idler T0 (FWHM/1.665): 3.867× 10−14 s, 3.867× 10−14 s,
3.867× 10−12 s, 3.867× 10−12 s

8. Laser Repetition Rate: 80 MHz

9. Device Length: 1 mm

10. Number of Periods: 100

11. Number of Steps Along t: 1023

12. Number of Iterations Per Material: 5

13. Number of Plots in z-direction: 101

14. Step Length Along t: 5.859 375× 10−14 s

15. Pump 1, Pump 2, Signal, and Idler Third-Order Effective Area: 1× 10−12 m2, 1× 10−12 m2,
1× 10−12 m2, 1× 10−12 m2

16. Pump 1, Pump 2, Signal, and Idler Pulse Shape: Sech, Sech, Exponential, Exponential

The gain profiles as a function of signal wavelength for non-degenerate FWM at 30 mW, 40 mW,
50 mW, and 60 mW are shown in Figure 1. The gain profiles display two broad peaks near 1250 nm
and 1380 nm.

4.2 Non-degenerate FWM - Changing Pump Power

At a signal wavelength of 1380 nm, the signal gain as a function of device length has been plotted
at six different values for pump power: 30 mW, 40 mW, 50 mW, 60 mW, 70 mW, and 80 mW. The
plots are shown in Figure 2.

4.3 Non-degenerate FWM - Changing Two-photon Absorption Coef-
ficient

At a signal wavelength of 1380 nm, the signal gain as a function of device length has been plot-
ted at four different values for two-photon absorption coefficient: 1.5× 10−12 m

W
, 2.0× 10−12 m

W
,

2.5× 10−12 m
W

, and 3.0× 10−12 m
W

. The plots are shown in Figure 3.
As can be seen in the figure, the overall gain of the device is highly sensitive to changes in the

two-photon absorption coefficient. This is an interesting observation as two-photon absorption is
a phenomenon that only occurs in semiconductor devices. Even a two-fold increase in the TPA
coefficient will lead to a decrease in signal gain from 90 dB to 50 dB. This observation is consistent
with the findings by Peng Xie et al., where the intensities of signal output with TPA and free-carrier
effects at 0.2 W to 1 W are consistently lower than those without the effects of TPA [5].
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Figure 1: Gain Profile for non-degenerate FWM at 30 mW, 40 mW, 50 mW, and 60 mW Pump
Power. As the pump power increases, both the maximum gain and the width of the gain profiles
increase [4]. At all of the pump powers, two broad gain peaks near 1250 nm and 1380 nm are seen.

5 Degenerate FWM Simulation Results

5.1 Non-degenerate FWM Signal Wavelength Scan

A scan with the following parameters was conducted for the degenerate FWM process. The signal
wavelengths ranged from 1100 nm to 1600 nm.

1. Pump Power: 30 mW, 40 mW, 50 mW, 60 mW

2. Refractive Index Models for Pump, Signal, and Idler: TE, TM, TM

3. Pump and Signal wavelengths: 1310 nm, 1100 nm - 1600 nm

4. Pump, Signal, and Idler Linear Loss Parameters: 200 m−1, 200 m−1, 200 m−1

5. Pump, Signal, and Idler Effective Self-phase Modulation Parameter: 100× 10−20 m2

W
, 100× 10−20 m2

W
,

100× 10−20 m2

W

6. Pump, Signal, and Idler Two-photon Absorption Parameters: 1.5× 10−12 m
W

, 1.5× 10−12 m
W

,
1.5× 10−12 m

W

7. Pump, Signal, and Idler T0 (FWHM/1.665): 3.867× 10−14 s, 3.867× 10−12 s, 3.867× 10−12 s

8. Laser Repetition Rate: 80 MHz
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Figure 2: Gain as a function of device length for non-degenerate FWM (1380 nm Signal Wave-
length) at 30 mW, 40 mW, 50 mW, 60 mW, 70 mW, and 80 mW Pump Power. As the pump
power increases, the overall gain at the end of the device increases as well. In addition, the rate
of change of the signal gain with respect to device length is much higher at 80 mW than it is at
30 mW.

9. Device Length: 1 mm

10. Number of Periods: 100

11. Number of Steps Along t: 1023

12. Number of Iterations Per Material: 5

13. Number of Plots in z-direction: 101

14. Step Length Along t: 5.859 375× 10−14 s

15. Pump, Signal, and Idler Third-Order Effective Area: 1× 10−12 m2, 1× 10−12 m2, 1× 10−12 m2

16. Pump, Signal, and Idler Pulse Shape: Sech, Exponential, Exponential

The gain profiles as a function of signal wavelength for degenerate FWM at 30 mW, 40 mW,
50 mW, and 60 mW are shown in Figure 4. The gain profiles display two broad peaks near 1150 nm
and 1500 nm.
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Figure 3: Gain as a function of device length for non-degenerate FWM (1380 nm Signal
Wavelength) at the following values for two-photon absorption: 1.5× 10−12 m

W
, 2.0× 10−12 m

W
,

2.5× 10−12 m
W

, and 3.0× 10−12 m
W

. When the TPA coefficient is increased by a factor of two, the
signal gain has decreased from 90 dB to 50 dB.

5.2 Degenerate FWM - Changing Pump Power

At a signal wavelength of 1500 nm, the signal gain as a function of device length has been plotted
at six different values for pump power: 30 mW, 40 mW, 50 mW, 60 mW, 70 mW, and 80 mW. The
plots are shown in Figure 5.

5.3 Degenerate FWM - Changing Two-photon Absorption Coefficient

At a signal wavelength of 1500 nm, the signal gain as a function of device length has been plot-
ted at four different values for two-photon absorption coefficient: 1.5× 10−12 m

W
, 2.0× 10−12 m

W
,

2.5× 10−12 m
W

, and 3.0× 10−12 m
W

. The plots are shown in Figure 6.
As can be seen in the figure, the overall gain of the device is highly sensitive to changes in the

two-photon absorption coefficient. Even a two-fold increase in the TPA coefficient will lead to a
decrease in peak signal gain from 90 dB to 45 dB.

6 Conclusion and Discussion

In this study, we have investigated the following effects for both the degenerate and non-degenerate
processes: (i) changing the pump power on the gain spectrum (gain as a function of signal wave-
length), (ii) changing the pump power on the gain profile (gain as a function of device length), and
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Figure 4: Gain Profile for degenerate FWM at 30 mW, 40 mW, 50 mW, and 60 mW Pump Power.
At all the pump powers, the gain profiles display two broad peaks near 1150 nm and 1500 nm.

(iii) changing the two-photon absorption on the gain profile (gain as a function of device length).
We have found that for experimentation (i), increasing the pump power increases both the

width of the gain spectrum as well as the maximum gain, while the phase-matching points are
approximately constant. For experimentation (ii), increasing the pump power increases the gain
at the end of the device as well as the steepness of the gain profile near the front of the device.
For experimentation (iii), increasing the two-photon absorption coefficient significantly decreases
the gain at the end of the device.

For the non-degenerate process (pump wavelength at 1310 nm), the phase-matching wave-
lengths are: 1250 nm and 1380 nm. For the degenerate process (pump wavelength at 1310 nm), the
phase-matching wavelengths are: 1150 nm and 1500 nm.
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Figure 6: Gain as a function of device length for degenerate FWM (1500 nm Signal Wavelength)
at the following values for two-photon absorption: 41.5× 10−12 m

W
, 2.0× 10−12 m

W
, 2.5× 10−12 m

W
,

and 3.0× 10−12 m
W

.
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